Generic Poincare-Bendixson Theorem for systems with invariant 2-cones and applications

发布者:文明办发布时间:2021-10-14浏览次数:271


主讲人:王毅  中国科学技术大学教授


时间:2021年10月18日10:00


地点:腾讯会议 311 420 013


举办单位:数理学院


主讲人介绍:王毅,中国科学技术大学数学科学学院教授。曾入选全国百篇优秀博士论文。主要感兴趣领域为非线性微分方程,无限维动力系统及生物数学。  


内容介绍:In this talk, we consider a smooth flow which is monotone w.r.t. a k-cone, a  closed set that contains a linear subspace of dim-k and no linear subspaces of  higher dimension. We show that orbits with initial data from an open dense  (called generic) subset of the phase space are either pseudo-ordered or  convergent to equilibria. This covers the celebrated Hirsch's Generic  Convergence Theorem in the case k=1, and yields a generic Poincare-Bendixson  Theorem for the case k=2. An application to SEIRS-models with nonlinear  incidence rates will be presented to show the possibility of generic convergence  to periodic orbits. This is a joint work with Lirui Feng and Jianhong Wu.

热点新闻
最新要闻
Baidu
sogou