Global dynamics of a Holling-II amensalism system with nonlinear growth rate and Allee effect

发布者:文明办发布时间:2021-12-01浏览次数:365

  

主讲人:王其如  中山大学教授

  

时间:2021年12月3日9:00

  

地点:腾讯会议 503 261 969

  

举办单位:数理学院

  

主讲人介绍:王其如,中山大学数学学院教授、博士研究生导师,广东省工业与应用数学学会常务副理事长、党支部书记,广州工业与应用数学学会理事长、党支部书记。从事泛函微分方程和时标动态方程方面的研究,是德国《数学文摘》和美国《数学评论》的评论员等。

  

内容介绍:Of concern is the global dynamics of a two species Holling-II amensalism system  with nonlinear growth rate. The existence and stability of trivial equilibrium,  semi-trivial equilibria, interior equilibria and infinite singularity are  studied. Under different parameters, there exist two stable equilibria which  means that this model is not always globally asymptotically stable. Together  with the existence of all possible equilibria and their stability, saddle  connection and close orbits, we derive some conditions for transcritical  bifurcation and saddle-node bifurcation. Furthermore, global dynamics of the  model is performed. Next, we incorporate Allee effect on the first species and  offer a new analysis of equilibria and bifurcation discussion of the model.  Finally, several numerical examples are performed to verify our theoretical  results.  

热点新闻
最新要闻
Baidu
sogou