Linked partition ideals and Schur's 1926 partition theorem

发布者:文明办发布时间:2021-12-01浏览次数:433

  

主讲人:陈小航, Dalhousie University

  

时间:2021年12月7日9:30

  

地点:腾讯会议 968 633 378

  

举办单位:数理学院

  

主讲人介绍:陈小航, 现为Dalhousie University 博士后, 导师为Karl Dilcher 教授。博士毕业于Pennsylvania State  University,师从美国科学院院士George Andrews教授。主要从事数论、组合数学以及特殊函数的研究,迄今在《Journal of  Combinatorial Theory, Series A》、《Journal of Number Theory》、《Discrete  Mathematics》、《Ramanujan Journal》、《Acta Arithmetica》等国际重要期刊发表学术论文多篇,并在Combinatory  Analysis 2018、Analytic and Combinatorial Number Theory: The Legacy of  Ramanujan等国际会议以及美国数学学会Joint Mathematics Meetings和Sectional Meetings上作报告。

  

内容介绍:Issai Schur's famous 1926 partition theorem states that the number of partitions  of $n$ into distinct parts congruent to $\pm 1$ modulo $3$ is the same as the  number of partitions of $n$ such that every two consecutive parts have  difference at least $3$ and that no two consecutive multiples of $3$ occur as  parts. In this talk, we consider some variants of Schur's theorem, especially  their Andrews--Gordon type generating functions, from the perspective of span  one linked partition ideals introduced by George Andrews. Our investigation has  interesting connections with basic hypergeometric series, $q$-difference  equations, computer algebra, and so on.  

热点新闻
最新要闻
Baidu
sogou