Spatial Dynamics of a Nonlocal Dispersal Population Model in a Shifting Environment

发布者:文明办发布时间:2022-06-03浏览次数:462


主讲人:赵晓强 加拿大纽芬兰纪念大学教授


时间:2022年6月7日19:30


地点:腾讯会议 552 829 277


举办单位:数理学院


主讲人介绍:赵晓强,加拿大纽芬兰纪念大学数学与统计系教授,该校University Research Professorship荣誉获得者。赵教授先后于1983年和1986年在西北大学数学系获学士和硕士学位,1990年在中国科学院应用数学研究所获博士学位。赵教授长期从事动力系统、微分方程和生物数学相关领域的研究,在单调动力学、一致持久性、行波解和渐近传播速度、基本再生数的理论及应用等方面的系列工作受到同行的广泛关注和引用。迄今为止,他已在“Comm. Pure Appl. Math.、 J. Eur. Math. Soc.、 J. reine angew. Math.、 J. Math. Pures Appl.、Trans. Amer. Math. Soc.、SIAM J. Math. Anal.”等国际知名期刊上发表论文100余篇,并在Springer出版专著“Dynamical Systems in Population Biology”。


内容介绍:We consider the spatial dynamics of a nonlocal dispersal population model in a shifting environment where the favorable region is shrinking. It is shown that there exists a critical number c* such that the species becomes extinct in the habitat if the speed of the shifting habitat edge is greater than c*, while the species persists and spreads along the shifting habitat if this speed is less than c*. Further, we establish the existence, uniqueness and global exponential stability of the forced traveling wave with the wave speed at which the habitat is shifting.



热点新闻
最新要闻
Baidu
sogou