The Modeling and Bifurcation Analysis in Vector-Borne Diseases

发布者:文明办发布时间:2022-10-09浏览次数:219

主讲人:范桂红 哥伦布州立大学副教授


时间:2022年10月14日9:00


地点:腾讯会议 478 127 447


举办单位:数理学院


主讲人介绍:范桂红,分别于2004年和2009从加拿大麦克马斯特大学(McMaster University)获得应用数学硕士学位和理学博士学位。于2009年2月至2011年8月在约克大学(York University)做博士后,在2011年9月到2013年6月在亚利桑那州立大学(Arizona State University)做访问助理教授(Visiting Assistant Professor). 从2013年7月起,任教于美国哥伦布州立大学。现为该校数学系副教授和系主任。主要研究兴趣为泛函微分方程理论及其在生物数学中的应用。特别是时间滞后系统在媒介传播疾病中的建模,理论分析,及其优化控制。具体的研究课题包括以蚊子为媒介的西尼罗病的传播及其预防,以蜱虫为媒介的莱姆病在全球暖化下的影响。在国际刊物发表论文三十余篇。多次受邀在微分方程方向的重要国际会议作学术报告。


内容介绍:Vector borne disease is a type of disease which is spread by vectors like mosquitoes or ticks and can infect human beings. Typical vector borne-disease includes West Nile virus, Lyme disease, and malaria etc. In this talk, we will talk about the modeling study of West Nile virus and Lyme disease using delay differential equations. We used delay as our bifurcating parameters in both systems we proposed and found interesting bifurcation results in both models including period doubling bifurcation, and fold bifurcation of period solutions as well as the existence of a bi-stability in the form of a boundary periodic solution and a positive periodic solution. For the tick’s model, we obtained the global bifurcation of the system using delay as the bifurcation parameters. The investigation on the complexity of the dynamical system offers a potential pathway to reveal the even more complicated transmission dynamics of vector-borne disease in reality. At the end, I will briefly introduce our recently finished modeling work on CORVID-19.

热点新闻
最新要闻
Baidu
sogou