Discrete gradient structure of the second-order integral averaged formula for nonlinear integro-diff

发布者:文明办发布时间:2022-10-21浏览次数:116

主讲人:廖洪林 南京航空航天大学教授


时间:2022年10月21日14:00


地点:腾讯会议 238 595 317


举办单位:数理学院


主讲人介绍:廖洪林,应用数学博士,2018年至今任教于南京航空航天大学数学学院。2001年在解放军理工大学获理学硕士学位,2010年在东南大学获理学博士学位,2001-2017年任教于解放军理工大学。学术研究方向为偏微分积分方程数值解,目前主要关注相场以及多相流模型的时间变步长离散与自适应算法, 在Math Comp,SIAM J Numer Anal, SIAM J Sci Comput,IMA J Numer Anal,J Comput Phys, Sci China Math等国内外专业期刊上发表学术研究论文三十余篇。


内容介绍:The discrete gradient structure and the positive definiteness of discrete fractional integrals or derivatives are fundamental to the numerical stability in long-time simulation of nonlinear integro-differential models. We bulid up a discrete gradient structure for a class of second-order variable-step approximations of fractional Riemann-Liouville integral and fractional Caputo derivative. Then certain variational energy dissipation laws at discrete levels of the corresponding variable-step Crank-Nicolson type methods are established for time-fractional Allen-Cahn and time-fractional Klein-Gordon type models. They are shown to be asymptotically compatible with the associated energy law of the classical Allen-Cahn and Klein-Gordon equations in the associated fractional order limits. Numerical examples together with an adaptive time-stepping procedure are provided to demonstrate the effectiveness of our second-order methods.

热点新闻
最新要闻
Baidu
sogou