问题、知识与数据驱动的统计学习

发布者:文明办发布时间:2022-11-07浏览次数:171


主讲人:林华珍 西南财经大学教授


时间:2022年11月17日19:00


地点:腾讯会议 632 482 982


举办单位:数理学院


主讲人介绍:林华珍,西南财经大学统计学院教授、博导,统计研究中心主任。主要研究方向为非参数方法、转换模型、生存数据分析、函数型数据分析、潜变量分析、时空数据分析。研究成果发表在包括国际统计学四大顶级期刊AoS、JASA、JRSSB、Biometrika和计量经济学顶级期刊JOE及JBES上。先后多次主持国家基金项目,包括国家杰出青年基金及自科重点项目。担任IMS-fellow,国际IMS-China、IBS-CHINA及ICSA-China委员,中国现场统计研究会数据科学与人工智能分会理事长,第九届全国工业统计学教学研究会副会长,中国现场统计研究会多个分会的副理事长。先后担任国际统计学期刊《Biometrics》、《Scandinavian Journal of Statistics》、《Journal of Business & Economic Statistics》、《Canadian Journal of Statistics》、 《Statistics and Its Interface》、《Statistical Theory and Related Fields》的Associate Editor, 国内权威或核心学术期刊《数学学报》(英文)、《应用概率统计》、《系统科学与数学》、《数理统计与管理》编委会编委。


内容介绍:常用的统计建模方法可以分为两类:一类是正则化建模,另一类是直接建模。正则化建模通过加入定性信息或专业知识来提高模型的精度和解释性。我们将介绍如何通过正则化建模方法,实现可估性或解的唯一性、找到重要的风险因子、识别风险因素的协同作用、识别同质样本、识别特定方案的敏感及不敏感人群。直接建模通常由问题驱动。我们将通过三个医学案例的解决方案来介绍直接建模方法,他们分别用于分析治疗的敏感人群,在一般观察性数据框架下考查因果关系;及治疗方法动态变化的情况下,评价各种治疗方法的效果。

热点新闻
最新要闻
Baidu
sogou